|
The Lyapunov–Malkin theorem (named for Aleksandr Lyapunov and Ioel Gilevich Malkin) is a mathematical theorem detailing nonlinear stability of systems.〔Zenkov, D.V., Bloch, A.M., & Marsden, J.E. (1999). "Lyapunov–Malkin Theorem and Stabilization of the Unicycle Rider." (). Retrieved on 2009-10-18.〕 ==Theorem== In the system of differential equations, : where, , , in an ''m'' × ''m'' matrix, and ''X''(''x'', ''y''), ''Y''(''x'', ''y'') represent higher order nonlinear terms. If all eigenvalues of the matrix have negative real parts, and ''X''(''x'', ''y''), ''Y''(''x'', ''y'') vanish when ''x'' = 0, then the solution ''x'' = 0, ''y'' = 0 of this system is stable with respect to (''x'', ''y'') and asymptotically stable with respect to ''x''. If a solution (''x''(''t''), ''y''(''t'')) is close enough to the solution ''x'' = 0, ''y'' = 0, then : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lyapunov–Malkin theorem」の詳細全文を読む スポンサード リンク
|